Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.394
Filtrar
1.
Nat Commun ; 15(1): 2382, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493217

RESUMO

Maternal overnutrition during lactation predisposes offspring to develop metabolic diseases and exacerbates the relevant syndromes in males more than females in later life. The hypothalamus is a heterogenous brain region that regulates energy balance. Here we combined metabolic trait quantification of mother and offspring mice under low and high fat diet (HFD) feeding during lactation, with single nucleus transcriptomic profiling of their offspring hypothalamus at peak lacation to understand the cellular and molecular alterations in response to maternal dietary pertubation. We found significant expansion in neuronal subpopulations including histaminergic (Hdc), arginine vasopressin/retinoic acid receptor-related orphan receptor ß (Avp/Rorb) and agouti-related peptide/neuropeptide Y (AgRP/Npy) in male offspring when their mothers were fed HFD, and increased Npy-astrocyte interactions in offspring responding to maternal overnutrition. Our study provides a comprehensive offspring hypothalamus map at the peak lactation and reveals how the cellular subpopulations respond to maternal dietary fat in a sex-specific manner during development.


Assuntos
Gorduras na Dieta , Obesidade , Humanos , Feminino , Camundongos , Masculino , Animais , Gorduras na Dieta/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Neuropeptídeo Y/metabolismo , Lactação , Perfilação da Expressão Gênica , Fenômenos Fisiológicos da Nutrição Materna
2.
Physiol Behav ; 276: 114483, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331375

RESUMO

The increasing prevalence of diabetes is of particular concern in women of childbearing age because of the short and long-term consequences of maternal diabetes for the health of the offspring, such as a greater risk of developing metabolic impairments and cognitive deficits. In addition, maternal diet during pregnancy and lactation might contribute to preventing or ameliorating adverse offspring outcomes. Recently, we described that access to snacks exacerbates glucose intolerance in mildly hyperglycemic pregnant dams. Therefore, we hypothesized that these offspring would show greater impairment in metabolic and behavioral outcomes across the lifespan. Neonatal STZ treatment was employed to induce maternal mild hyperglycemia in females. After mating, normo- and hyperglycemic dams were given access either to standard chow or standard show plus snacks. Male and female offspring were evaluated on postnatal days (PND) 30, 90, and 360. Offspring behavior was assessed in the marble burying task, the open-field test, the elevated-plus maze, and sucrose preference. Glucose tolerance and morphometric analyses were also carried out. Maternal hyperglycemia increased body weight and fat deposition only on PND 30, while retroperitoneal fat deposition was reduced in the offspring of snack-fed dams. However, maternal snack intake reduced offspring body weight and length on PND 90. Fasting glucose was increased in females born to hyperglycemic, snack-fed dams on PND 90. Glucose clearance was altered by both maternal conditions in male offspring on PND 30, however, this sex difference was reversed on PND 90, with maternal hyperglycemia impairing glucose clearance only in females. In addition, maternal hyperglycemia reduced anxiety-like behavior in female offspring on PND 30, especially in the offspring of snack-fed dams, while maternal snack intake reduced sucrose preference in both males and females in adulthood. These results suggest that the effects of maternal hyperglycemia during pregnancy and lactation on offspring outcomes were not exacerbated by snack intake. Although additive effects of the two maternal conditions were hypothesized, the absence of such effects could be related to the mild maternal hyperglycemia induced by STZ treatment even when combined with snack intake. While maternal hyperglycemia alone impaired some offspring outcomes, its association with snack intake did not aggravate those impairments but rather resulted in outcomes more similar to those of offspring born to normoglycemic dams. Finally, females were found to be more susceptible to both the effects of maternal hyperglycemia and snack intake on metabolism and behavior.


Assuntos
Diabetes Mellitus , Intolerância à Glucose , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Recém-Nascido , Feminino , Masculino , Humanos , Lanches , Longevidade , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Peso Corporal , Glucose , Sacarose , Dieta Hiperlipídica/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna
3.
Nutrients ; 16(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38337626

RESUMO

Maternal obesity and/or high-fat diet (HF) consumption can disrupt appetite regulation in their offspring, contributing to transgenerational obesity and metabolic diseases. As fatty acids (FAs) play a role in appetite regulation, we investigated the maternal and fetal levels of FAs as potential contributors to programmed hyperphagia observed in the offspring of obese dams. Female mice were fed either a control diet (CT) or HF prior to mating, and fetal and maternal blood and tissues were collected at 19 days of gestation. Elevated levels of linoleic acid were observed in the serum of HF dams as well as in the serum of their fetuses. An increased concentration of eicosadienoic acid was also detected in the hypothalamus of female HF-O fetuses. HF-O male fetuses showed increased hypothalamic neuropeptide Y (Npy) gene expression, while HF-O female fetuses showed decreased hypothalamic pro-opiomelanocortin (POMC) protein content. Both male and female fetuses exhibited reduced hypothalamic neurogenin 3 (NGN-3) gene expression. In vitro experiments confirmed that LA contributed to the decreased gene expression of Pomc and Ngn-3 in neuronal cells. During lactation, HF female offspring consumed more milk and had a higher body weight compared to CT. In summary, this study demonstrated that exposure to HF prior to and during gestation alters the FA composition in maternal serum and fetal serum and hypothalamus, particularly increasing n-6, which may play a role in the switch from POMC to NPY neurons, leading to increased weight gain in the offspring during lactation.


Assuntos
Neuropeptídeos , Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Animais , Masculino , Gravidez , Camundongos , Dieta Hiperlipídica/efeitos adversos , Obesidade Materna/metabolismo , Ácidos Graxos/metabolismo , Pró-Opiomelanocortina/metabolismo , Obesidade/metabolismo , Aumento de Peso , Neuropeptídeos/metabolismo , Hipotálamo/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal/metabolismo
4.
Obesity (Silver Spring) ; 32(4): 743-755, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328970

RESUMO

OBJECTIVE: Exposure in utero to maternal diet can program offspring health and susceptibility to disease. Using C57BL6/JArc mice, we investigated how maternal dietary protein to carbohydrate balance influences male and female offspring appetite and metabolic health. METHODS: Dams were placed on either a low-protein (LP) or high-protein (HP) diet. Male and female offspring were placed on a food choice experiment post weaning and were then constrained to either a standard diet or Western diet. Food intake, body weight, and composition were measured, and various metabolic tests were performed at different timepoints. RESULTS: Offspring from mothers fed HP diets selected a higher protein intake and had increased body weight in early life relative to offspring from LP diet-fed dams. As predicted by protein leverage theory, higher protein intake targets led to increased food intake when offspring were placed on no-choice diets, resulting in greater body weight and fat mass. The combination of an HP maternal diet and a Western diet further exacerbated this obesity phenotype and led to long-term consequences for body composition and metabolism. CONCLUSIONS: This work could help explain the association between elevated protein intake in humans during early life and increased risk of obesity in childhood and later life.


Assuntos
Obesidade Pediátrica , Efeitos Tardios da Exposição Pré-Natal , Humanos , Camundongos , Animais , Masculino , Feminino , Fenômenos Fisiológicos da Nutrição Materna , Peso Corporal , Ingestão de Alimentos , Nutrientes , Dieta Ocidental/efeitos adversos
5.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396912

RESUMO

Obese individuals often suffer from metabolic health disorders and reduced oocyte quality. Preconception diet interventions in obese outbred mice restore metabolic health and oocyte quality and mitochondrial ultrastructure. Also, studies in inbred mice have shown that maternal obesity induces metabolic alterations and reduces oocyte quality in offspring (F1). Until now, the effect of maternal high-fat diet on F1 metabolic health and oocyte quality and the potential beneficial effects of preconception dietary interventions have not been studied together in outbred mice. Therefore, we fed female mice a high-fat/high-sugar (HF/HS) diet for 7 weeks and switched them to a control (CONT) or caloric-restriction (CR) diet or maintained them on the HF/HS diet for 4 weeks before mating, resulting in three treatment groups: diet normalization (DN), CR, and HF/HS. In the fourth group, mice were fed CONT diet for 11 weeks (CONT). HF/HS mice were fed an HF/HS diet from conception until weaning, while all other groups were then fed a CONT diet. After weaning, offspring were kept on chow diet and sacrificed at 11 weeks. We observed significantly elevated serum insulin concentrations in female HF/HS offspring and a slightly increased percentage of mitochondrial ultrastructural abnormalities, mitochondrial size, and mitochondrial mean gray intensity in HF/HS F1 oocytes. Also, global DNA methylation was increased and cellular stress-related proteins were downregulated in HF/HS F1 oocytes. Mostly, these alterations were prevented in the DN group, while, in CR, this was only the case for a few parameters. In conclusion, this research has demonstrated for the first time that a maternal high-fat diet in outbred mice has a moderate impact on female F1 metabolic health and oocyte quality and that preconception DN is a better strategy to alleviate this compared to CR.


Assuntos
Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Camundongos , Animais , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade Materna/metabolismo , Mitocôndrias/metabolismo , Açúcares/metabolismo , Oócitos/metabolismo , Camundongos Endogâmicos C57BL , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal/metabolismo
6.
Neurosci Lett ; 824: 137669, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38360145

RESUMO

Maternal nutrition and physical activity during pregnancy and lactation can modify offspring development. Here, we investigated the effects of maternal aerobic exercise (AE) and Western diet (WD) on brain development, cognitive flexibility, and memory of progenies. Sixteen adult female mice were assigned to AE or sedentary groups (SED) and fed a balanced diet (BD) or WD. Offspring were categorized into four groups: WD + AE, WD + SED, BD + AE, and BD + SED. The AE group showed enhanced spontaneous alternation in the T-maze test, suggesting an improvement in working memory and tasks related to cognitive flexibility. The novel object recognition (NOR) test showed that the BD + AE pups improved their absolute discrimination and discrimination index at 24 h, which suggests a delay in memory consolidation without affecting evocation. WD + SED showed poorer discrimination and recognition memory. The pups of AE mothers had better efficiency in short-term memory, whereas WD offspring showed low performance in long-term memory. Interestingly, exercise improved tasks related to cognitive flexibility, regardless of the diet. These findings indicate that maternal diet and physical activity modify offspring development and suggest that maternal AE during pregnancy could be a beneficial intervention to counteract the adverse effects of WD by improving spatial memory and cognitive flexibility in offspring.


Assuntos
Dieta Ocidental , Memória de Longo Prazo , Gravidez , Humanos , Camundongos , Feminino , Animais , Fenômenos Fisiológicos da Nutrição Materna , Lactação , Aprendizagem em Labirinto
7.
Clin Epigenetics ; 16(1): 35, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413986

RESUMO

BACKGROUND: We previously reported in the "Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung Function" randomized clinical trial (RCT) that vitamin C (500 mg/day) supplementation to pregnant smokers is associated with improved respiratory outcomes that persist through 5 years of age. The objective of this study was to assess whether buccal cell DNA methylation (DNAm), as a surrogate for airway epithelium, is associated with vitamin C supplementation, improved lung function, and decreased occurrence of wheeze. METHODS: We conducted epigenome-wide association studies (EWAS) using Infinium MethylationEPIC arrays and buccal DNAm from 158 subjects (80 placebo; 78 vitamin C) with pulmonary function testing (PFT) performed at the 5-year visit. EWAS were performed on (1) vitamin C treatment, (2) forced expiratory flow between 25 and 75% of expired volume (FEF25-75), and (3) offspring wheeze. Models were adjusted for sex, race, study site, gestational age at randomization (≤ OR > 18 weeks), proportion of epithelial cells, and latent covariates in addition to child length at PFT in EWAS for FEF25-75. We considered FDR p < 0.05 as genome-wide significant and nominal p < 0.001 as candidates for downstream analyses. Buccal DNAm measured in a subset of subjects at birth and near 1 year of age was used to determine whether DNAm signatures originated in utero, or emerged with age. RESULTS: Vitamin C treatment was associated with 457 FDR significant (q < 0.05) differentially methylated CpGs (DMCs; 236 hypermethylated; 221 hypomethylated) and 53 differentially methylated regions (DMRs; 26 hyper; 27 hypo) at 5 years of age. FEF25-75 was associated with one FDR significant DMC (cg05814800), 1,468 candidate DMCs (p < 0.001), and 44 DMRs. Current wheeze was associated with 0 FDR-DMCs, 782 candidate DMCs, and 19 DMRs (p < 0.001). In 365/457 vitamin C FDR significant DMCs at 5 years of age, there was no significant interaction between time and treatment. CONCLUSIONS: Vitamin C supplementation to pregnant smokers is associated with buccal DNA methylation in offspring at 5 years of age, and most methylation signatures appear to be persistent from the prenatal period. Buccal methylation at 5 years was also associated with current lung function and occurrence of wheeze, and these functionally associated loci are enriched for vitamin C associated loci. Clinical trial registration ClinicalTrials.gov, NCT01723696 and NCT03203603.


Assuntos
Ácido Ascórbico , Metilação de DNA , Fumantes , Vitaminas , Feminino , Humanos , Lactente , Gravidez , Ácido Ascórbico/uso terapêutico , Suplementos Nutricionais , Pulmão , Sons Respiratórios/genética , Vitaminas/uso terapêutico , Pré-Escolar , Fenômenos Fisiológicos da Nutrição Materna
8.
J Nutr Biochem ; 127: 109604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373508

RESUMO

Recent human and animal studies have delineated hypertension can develop in the earliest stage of life. A lack or excess of particular nutrients in the maternal diet may impact the expression of genes associated with BP, leading to an increased risk of hypertension in adulthood. Modulations in gene expression could be caused by epigenetic mechanisms through aberrant DNA methylation, histone modification, and microRNAs (miRNAs). Several molecular mechanisms for the developmental programming of hypertension, including oxidative stress, dysregulated nutrient-sensing signal, aberrant renin-angiotensin system, and dysbiotic gut microbiota have been associated with epigenetic programming. Conversely, maternal nutritional interventions such as amino acids, melatonin, polyphenols, resveratrol or short chain fatty acids may work as epigenetic modifiers to trigger protective epigenetic modifications and prevent offspring hypertension. We present a current perspective of maternal malnutrition that can cause fetal programming and the potential of epigenetic mechanisms lead to offspring hypertension. We also discuss the opportunities of dietary nutrients or nutraceuticals as epigenetic modifiers to counteract those adverse programming actions for hypertension prevention. The extent to which aberrant epigenetic changes can be reprogrammed or reversed by maternal dietary interventions in order to prevent human hypertension remains to be established. Continued research is necessary to evaluate the interaction between maternal malnutrition and epigenetic programming, as well as a greater focus on nutritional interventions for hypertension prevention towards their use in clinical translation.


Assuntos
Hipertensão , Desnutrição , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Desenvolvimento Fetal , Desnutrição/complicações , Desnutrição/genética , Epigênese Genética , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle
9.
J Perinat Neonatal Nurs ; 38(1): 1-2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38278633
10.
Behav Brain Res ; 462: 114869, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38246396

RESUMO

The aim of this review was to summarize and discuss the impact of a maternal high-fat diet on the locomotor activity of offspring during anxiety-related behavioral tests. A search was performed in the LILACS, Web of Science, SCOPUS and PUMBED databases, using the following inclusion criteria: studies in which rodent dams were submitted to a high-fat diet during gestation and/or lactation and in which the locomotor activity parameters of offspring were evaluated during an anxiety-related test. Twenty-three articles met these criteria and were included. Most studies, 14 out of 23, found that a maternal high-fat diet did not alter offspring locomotor activity. Six articles found that a maternal high-fat diet increased the locomotor activity of offspring, while three found decreased locomotion. This effect may be associated with the initial response to the test and the fact that it was the first day of exposure to the apparatus.


Assuntos
Dieta Hiperlipídica , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Dieta Hiperlipídica/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Lactação , Ansiedade , Locomoção
11.
Food Funct ; 15(1): 110-124, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38044717

RESUMO

Increasing evidence supports the existence of fetal-originated adult diseases. Recent research indicates that the intrauterine environment affects the fetal hypothalamic energy intake center. Inulin is a probiotic that can moderate metabolic disorders, but whether maternal inulin intervention confers long-term metabolic benefits to lipid metabolism in offspring in their adult lives and the mechanism involved are unknown. Here, we used a maternal overnutrition model that was induced by excess energy intake before and during pregnancy and lactation and maternal inulin intervention was performed during pregnancy and lactation. The hypothalamic genome methylation in offspring was analyzed using a methylation array. The results showed that maternal inulin treatment modified the maternal high-fat diet (HFD)-induced increases in body weight, adipose tissue weight, and serum insulin and leptin levels and decreases in serum adiponectin levels. Maternal inulin intervention regulated the impairments in hypothalamic leptin resistance, induced the methylation of Socs3, Npy, and Il6, and inhibited the methylation of Lepr in the hypothalamus of offspring. In conclusion, maternal inulin intervention modifies offspring lipid metabolism, and the underlying mechanism involves the methylation of genes in the hypothalamus feeding circuit.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Leptina , Dieta Hiperlipídica/efeitos adversos , Obesidade/genética , Obesidade/metabolismo , Inulina/farmacologia , Inulina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Hipotálamo/metabolismo , Lipídeos , Fenômenos Fisiológicos da Nutrição Materna
12.
Life Sci ; 336: 122315, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38035994

RESUMO

AIMS: The developmental origin of health and disease (DOHaD) theory postulates that poor nutrition during fetal life increases the risk of disease later in life. Excessive fructose intake has been associated with obesity, diabetes, and nonalcoholic fatty liver disease, and maternal fructose intake during pregnancy has been shown to affect offspring health. In this study, we investigated the effects of high maternal fructose intake on the liver stem/progenitor cells of offspring. MAIN METHOD: A fructose-based DOHaD model was established using Sprague-Dawley rats. Small hepatocytes (SHs), which play an important role in liver development and regeneration, were isolated from the offspring of dams that were fed a high-fructose corn syrup (HFCS) diet. The gene expression and DNA methylation patterns were analyzed on postnatal day (PD) 21 and 60. KEY FINDINGS: Maternal HFCS intake did not affect body weight or caloric intake, but differences in gene expression and DNA methylation patterns were observed in the SHs of offspring. Functional analysis revealed an association between metabolic processes and ion transport. SIGNIFICANCE: These results suggest that maternal fructose intake affects DNA methylation and gene expression in the liver stem/progenitor cells of offspring. Furthermore, the prolonged retention of these changes in gene expression and DNA methylation in adulthood (PD 60) suggests that maternal fructose intake may exert lifelong effects. These findings provide insights into the DOHaD for liver-related disorders and highlight the importance of maternal nutrition for the health of the next generation.


Assuntos
Xarope de Milho Rico em Frutose , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Ratos , Humanos , Animais , Feminino , Ratos Sprague-Dawley , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Obesidade/metabolismo , Fígado/metabolismo , Frutose/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna
13.
Endocr Rev ; 45(2): 253-280, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37971140

RESUMO

This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.


Assuntos
Leptina , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Animais , Feminino , Humanos , Leptina/metabolismo , Adiposidade/fisiologia , Obesidade/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Insulina/metabolismo
14.
Br J Nutr ; 131(4): 630-641, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-37795821

RESUMO

The offspring of women in the poorest socio-economic groups in Western societies have an increased risk of developing non-communicable disease in adult life. Deprivation is closely related to the consumption of a diet with an excess of energy (sugar and fat), salt and a shortage of key vitamins. To test the hypothesis that this diet adversely affects the development and long-term health of the offspring, we have formulated two rodent diets, one with a nutrient profile corresponding to the diet of pregnant women in the poorest socio-economic group (DEP) and a second that incorporated current UK recommendations for the diet in pregnancy (REC). Female rats were fed the experimental diets for the duration of gestation and lactation and the offspring compared with those from a reference group fed the AIN-93G diet. The growth trajectory of DEP and REC offspring was reduced compared with the AIN-93G. The REC offspring diet had a transient increase in adipose reserves at weaning, but by 30 weeks of age the body composition of all three groups was similar. The maternal diet had no effect on the homoeostatic model assessment index or the insulin tolerance of the offspring. Changes in hepatic gene expression in the adult REC offspring were consistent with an increased hepatic utilisation of fatty acids and a reduction in de novo lipogenesis. These results show that despite changes in growth and adiposity maternal metabolic adaptation minimises the adverse consequences of the imbalanced maternal diet on the metabolism of the offspring.


Assuntos
Obesidade , Efeitos Tardios da Exposição Pré-Natal , Humanos , Ratos , Animais , Feminino , Gravidez , Peso Corporal , Obesidade/metabolismo , Dieta , Adiposidade , Fígado/metabolismo , Desmame , Lactação , Dieta Hiperlipídica/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal/metabolismo
15.
Appl Physiol Nutr Metab ; 49(2): 157-166, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37816257

RESUMO

Maternal protein malnutrition during developmental periods might impair the redox state and the brain's excitatory/inhibitory neural network, increasing central sympathetic tone. Conversely, moderate physical exercise at an early age reduces the risk of chronic diseases. Thus, we hypothesized that a moderate training protocol could reduce the harmful effects of a low-protein maternal diet on the brainstem of young male offspring. We used a rat model of maternal protein restriction during the gestational and lactation period followed by an offspring's continuous treadmill exercise. Pregnant rats were divided into two groups according to the protein content in the diet: normoprotein (NP), receiving 17% of casein, and low protein (LP), receiving 8% of casein until the end of lactation. At 30 days of age, the male offspring were further subdivided into sedentary (NP-Sed and LP-Sed) or exercised (NP-Ex and LP-Ex) groups. Treadmill exercise was performed as follows: 4 weeks, 5 days/week, 60 min/day at 50% of maximal running capacity. The trained animals performed a treadmill exercise at 50% of the maximal running capacity, 60 min/day, 5 days/week, for 4 weeks. Our results indicate that a low-protein diet promotes deficits in the antioxidant system and a likely mitochondrial uncoupling. On the other hand, physical exercise restores the redox balance, which leads to decreased oxidative stress caused by the diet. In addition, it also promotes benefits to GABAergic inhibitory signaling. We conclude that regular moderate physical exercise performed in youthhood protects the brainstem against changes induced by maternal protein restriction.


Assuntos
Tronco Encefálico , Caseínas , Gravidez , Feminino , Ratos , Animais , Masculino , Humanos , Ratos Wistar , Tronco Encefálico/metabolismo , Antioxidantes/metabolismo , Oxirredução , Dieta com Restrição de Proteínas/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna
16.
J Nutr Biochem ; 123: 109490, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865384

RESUMO

Maternal high-fat diet (HFD) is related to an increased risk of glucose metabolism disorders throughout the whole life of offspring. The pancreas is a glucose homeostasis regulator. Accumulating evidence has revealed that maternal HFD affects offspring pancreas structure and function. However, the potential mechanism remains unclear. In this study, the mouse dam was fed with HFD or control diet (CD) during prepregnancy, pregnancy and lactation. The pancreatic insulin secretion function and islet genome methylome of offspring were analyzed. Pancreatic islet specific gene methylation was detected by using MeDIP qPCR. The results showed that body weight, blood glucose after oral glucose loads, fasting serum insulin, and HOMA-IR index values were significantly higher in male 12-week-old offspring from HFD dams than in the offspring from CD dams. Maternal HFD induced insulin secretion defects in male offspring. Compared with that in maternal CD group, methylation of the Abcc8 and Kcnj11 genes was increased in maternal HFD group in male offspring pancreatic islets. Furthermore, the expression levels of Abcc8 and Kcnj11 were downregulated by intrauterine exposure to a maternal HFD. In summary, maternal HFD results in a long-term functional disorder of the pancreas that is involved in insulin secretion-related gene DNA hypermethylation.


Assuntos
Dieta Hiperlipídica , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Camundongos , Masculino , Animais , Humanos , Dieta Hiperlipídica/efeitos adversos , Metilação de DNA , Glucose/metabolismo , Expressão Gênica , Pâncreas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fenômenos Fisiológicos da Nutrição Materna
17.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38048597

RESUMO

Obesity and metabolic diseases are rising among women of reproductive age, increasing offspring metabolic risk. Maternal nutritional interventions during lactation present an opportunity to modify offspring outcomes. We previously demonstrated in mice that adult male offspring have metabolic impairments and increased adipose tissue macrophages (ATM) when dams are fed high fat diet (HFD) during the postnatal lactation window (HFD PN). We sought to understand the effect of HFD during lactation on early-life inflammation. HFD PN offspring were evaluated at postnatal day 16 to 19 for tissue weight and gene expression. Profiling of adipose tissue and bone marrow immune cells was conducted through lipidomics, in vitro myeloid colony forming unit assays, and flow cytometry. HFD PN mice had more visceral gonadal white adipose tissue (GWAT) and subcutaneous fat. Adipose tissue RNA sequencing demonstrated enrichment of inflammation, chemotaxis, and fatty acid metabolism and concordant changes in GWAT lipidomics. Bone marrow (BM) of both HFD PN male and female offspring had increased monocytes (CD45+Ly6G-CD11b+CD115+) and B cells (CD45+Ly6G-CD11b-CD19+). Similarly, serum from HFD PN offspring enhanced in vitro BM myeloid colonies in a toll-like receptor 4-dependent manner. We identified that male HFD PN offspring had increased GWAT pro-inflammatory CD11c+ ATMs (CD45+CD64+). Maternal exposure to HFD alters milk lipids enhancing adiposity and myeloid inflammation even in early life. Future studies are needed to understand the mechanisms driving this pro-inflammatory state of both BM and ATMs, the causes of the sexually dimorphic phenotypes, and the feasibility of intervening in this window to improve metabolic health.


Assuntos
Dieta Hiperlipídica , Obesidade , Feminino , Masculino , Camundongos , Animais , Humanos , Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Lactação , Inflamação , Exposição Materna , Fenômenos Fisiológicos da Nutrição Materna
18.
Nutrients ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068828

RESUMO

Diet-induced obesity could have detrimental effects on adults and their progeny. The aim of this study was to determine the effect of a high-energy diet on both F1 mice body weight and tissue/organ weight and F2 offspring growth. A simple murine model for obesity was developed using a high-energy diet and mice reared in litters of five or ten, from 30 dams receiving a cafeteria diet of either commercial chow (low energy), or a mixture of commercial chow, chocolate (50% cacao), and salty peanuts (high energy). This diet continued from mating until weaning, when the pups were allocated according to sex into eight groups based on maternal diet, litter size, and post-weaning diet. On day 74, the males were slaughtered, and the females were bred then slaughtered after lactation. As a result, the high-energy maternal diet increased the F1 offspring growth during lactation, while the high-energy post-weaning diet increased the F1 adult body weight and tissue/organ weight. The high-energy maternal diet could negatively affect the onset of the F1 but not the maintenance of breastfeeding of F1 and F2 offspring. For F2 offspring growth, the high energy overlapped the low-energy post-weaning diet, due to problems of gaining weight during lactation.


Assuntos
Melhoramento Vegetal , Efeitos Tardios da Exposição Pré-Natal , Masculino , Feminino , Camundongos , Animais , Humanos , Modelos Animais de Doenças , Obesidade/etiologia , Reprodução , Dieta/efeitos adversos , Lactação/fisiologia , Fenômenos Fisiológicos da Nutrição Materna , Peso Corporal
19.
Nutrients ; 15(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37960247

RESUMO

With rising rates of human obesity, this study aimed to determine the relationship between maternal diet-induced obesity, offspring morphometrics, and behavior in mice. Pregnant and lactating female mice fed a diet high in fat and sugar (HFHS) commonly consumed by human populations showed decreased food, calorie, and protein intake but increased adiposity at the expense of lean mass. The pre-weaning body weight of the HFHS offspring was reduced for the first postnatal week but not thereafter, with HFHS female offspring having higher body weights by weaning due to continuing higher fractional growth rates. Post-weaning, there were minor differences in offspring food and protein intake. Maternal diet, however, affected fractional growth rate and total body fat content of male but not female HFHS offspring. The maternal diet did not affect the offspring's locomotor activity or social behavior in either sex. Both the male and female HFHS offspring displayed reduced anxiety-related behaviors, with sex differences in particular aspects of the elevated plus maze task. In the novel object recognition task, performance was impaired in the male but not female HFHS offspring. Collectively, the findings demonstrate that maternal obesity alters the growth, adiposity, and behavior of male and female offspring, with sex-specific differences.


Assuntos
Adiposidade , Açúcares , Humanos , Feminino , Masculino , Gravidez , Camundongos , Animais , Açúcares/metabolismo , Lactação , Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Fenômenos Fisiológicos da Nutrição Materna
20.
Nutrients ; 15(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37960344

RESUMO

Early-life exposure to high-fat diets (HF) can program metabolic and cognitive alterations in adult offspring. Although the hippocampus plays a crucial role in memory and metabolic homeostasis, few studies have reported the impact of maternal HF on this structure. We assessed the effects of maternal HF during lactation on physiological, metabolic, and cognitive parameters in young adult offspring mice. To identify early-programming mechanisms in the hippocampus, we developed a multi-omics strategy in male and female offspring. Maternal HF induced a transient increased body weight at weaning, and a mild glucose intolerance only in 3-month-old male mice with no change in plasma metabolic parameters in adult male and female offspring. Behavioral alterations revealed by a Barnes maze test were observed both in 6-month-old male and female mice. The multi-omics strategy unveiled sex-specific transcriptomic and proteomic modifications in the hippocampus of adult offspring. These studies that were confirmed by regulon analysis show that, although genes whose expression was modified by maternal HF were different between sexes, the main pathways affected were similar with mitochondria and synapses as main hippocampal targets of maternal HF. The effects of maternal HF reported here may help to better characterize sex-dependent molecular pathways involved in cognitive disorders and neurodegenerative diseases.


Assuntos
Dieta Hiperlipídica , Efeitos Tardios da Exposição Pré-Natal , Animais , Camundongos , Feminino , Masculino , Humanos , Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Obesidade/metabolismo , Multiômica , Proteômica , Lactação , Hipocampo/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...